ProjectResearch Aims & Conceptional FoundationWhat We Did & Didn'tDataLiteraturePublicationsTeamContact

Military-Technical Transformation: Preparing an Index to Enable Comparative Research


For three decades, military strategists have claimed that information superiority would increasingly minimize or even replace firepower through the application of advanced information technologies on the battlefield (sensors, computers, automation etc.) (Owens 2001; Arquilla/Ronfeldt 1997; Libicki  1996).

How this revolution affects the probability of international conflict or the effectiveness of peacebuilding is fiercely debated between political decision-makers and from within the scientific community alike. Critics point to moral dilemmas, the erosion of international law, the marginalization of democratic accountability mechanisms (for example with regard to drone strikes) and higher risks of unintended conflict escalation (Bergen/Rothenberg 2015; Sauer 2014; Kaag und Kreps 2014; Boyle 2013; Neuneck 2012; Schörnig 2011).

What is missing though is a comprehensive understanding of the driving factors of state investments in areas such as satellite sensors, drone technology or remotely-guided missiles. Given the large number of potential explanatory variables (see Mathers 2002; Terriff/Osinga 2010: 199-200; Giles 2014; Giles/Monaghan 2014; Laird/Mey 1999; Forster/Edmunds/Cottey 2002; Adams/Ben-Ari 2005; Farrell 2008; Gareis 2011; King 2014; Foley/Griffin/McCartney 2011; Thiele 2011) and, arguably, the confounding influence of more than a few other factors, there clearly is a need to supplement qualitatively gained knowledge through quantitative research designs.

Nevertheless, multicausal large-N studies cannot be conducted as long as we do not have a standardized measurement of the dependent variable, namely the timing and intensity of state investments in information technology-centric military equipment. The research project seeks to fill this critical gap.

To this purpose, data about unmanned aerial vehicles (UAVs), satellites and guided missiles have been aggregated into an index that enables a standardized ranking of the capabilities of each state (see table).

The data availabaility issues and conceptional criteria that guided the selection of the indicators are explained in the ‚Research Aims & Conceptional Foundation‘ section. A detailed look at our data and a set of download options are provided in the ‚Data‘ section.

Amongst other things, our data can be used to plausibilize two different logics of military-technological diffusion:

Structural-realist explanations of the military diffusion processes are based on the logic of systemic competition (Waltz 1979: 127) and a „technological imperative“ (Buzan/Herring 1998: 50-51; Resende-Santos 1996, 2007). Variances in military-technological capabilities result from the unequal resource bases (measurable in the gross domestic product) of different countries. Our data shows that, unsurprisingly, unequal resources clearly have some predictive power with regard to the military-technical capabilities. Yet other factors must play a role as well because the correlation is far from being perfect. A case in point are low MTTI-rankings of Latin American states with considerable economic resource bases (see „Data 2015“).

For illustrative purpose, see this comparison of the GDP and Index Value:

In contrast, liberal accounts of the ongoing military transformation, amongst other factors, point to the restraining influence of cas